skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Millikin, Alexie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The early Paleoproterozoic (ca. 2.5–2.2 Ga) represents a critical juncture in Earth history, marking the inception of an oxygenated atmosphere while bearing witness to potentially multiple widespread and severe glaciations. Deciphering the nature of this glacial epoch and its connection with atmospheric oxygenation has, however, proven difficult, hindered by a reliance on disputed stratigraphic correlations given the paucity of direct radiometric age constraints. Nowhere is this more acute than within the South African Transvaal Supergroup: Here, while the loss of oxygen-sensitive mass-independent sulfur isotope fractionation (S-MIF) has been reported from both the Duitschland and Rooihoogte formations, divided opinion surrounding the time-equivalence of these units has prompted authors to argue for vastly different oxygenation trajectories. Addressing this debate, we present a depositional Re-Os age (2443 ± 33 Ma) from diamictite samples preserved in drillcore of the upper Duitschland Formation. The 100-million-year separation between the Duitschland Formation and its previously presumed equivalent reveals at least two isolated disappearances of S-MIF, requiring that the Great Oxidation Event was dynamic and proceeded via discrete oxygenation episodes whose structure remains incompletely understood. Importantly, our revised framework aligns the lower Duitschland diamictite with the low-latitude glacigenic Makganyene Formation, supporting hypotheses of widespread regional, and potentially global, early Paleoproterozoic glaciation. 
    more » « less
  2. Abstract A dataset to describe exposed bedrock and surficial geology of Antarctica has been constructed by the GeoMAP Action Group of the Scientific Committee on Antarctic Research (SCAR) and GNS Science. Our group captured existing geological map data into a geographic information system (GIS), refined its spatial reliability, harmonised classification, and improved representation of glacial sequences and geomorphology, thereby creating a comprehensive and coherent representation of Antarctic geology. A total of 99,080 polygons were unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial resolution. Geological unit definition is based on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs the international Geoscience Markup Language (GeoSciML) data protocols to provide attribute-rich and queryable information, including bibliographic links to 589 source maps and scientific literature. GeoMAP is the first detailed geological map dataset covering all of Antarctica. It depicts ‘known geology’ of rock exposures rather than ‘interpreted’ sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation. 
    more » « less
  3. Abstract The Tonian–Ediacaran Hecla Hoek succession of Svalbard, Norway, represents one of the most complete and well-preserved Neoproterozoic sedimentary successions worldwide. With diverse fossil assemblages, an extensive carbonate δ13C record, and sedimentary evidence for two distinct Cryogenian glaciations, this succession will continue to yield insights into the Neoproterozoic Earth system; however, at present there are no direct radiometric age constraints for these strata. We present two new Re-Os ages and initial Os isotope data that constrain the timing of Neoproterozoic glaciation in Svalbard, providing further support for two globally synchronous Cryogenian glaciations and insight into pre- and post-snowball global weathering conditions. An age from the Russøya Member (Elbobreen Formation) facilitates correlation of the negative carbon isotope excursion recorded therein with the pre-glacial “Islay” excursion of the Callison Lake Formation of northwestern Canada and the Didikama and Matheos Formations of Ethiopia. We propose that this globally synchronous ca. 735 Ma carbon isotope excursion be referred to as the Russøya excursion with northeastern Svalbard as the type locality. This new age provides an opportunity to construct a time-calibrated geological framework in Svalbard to assess connections between biogeochemical cycling, evolutionary innovations within the eukaryotes, and the most extreme climatic changes in Earth history. 
    more » « less
  4. Abstract Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in freshwater environments in the early Proterozoic and diversified into marine environments by the Tonian Period, but early algal evolution is poorly reflected in the fossil record. Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outer-shelf marine facies of the ca. 950–900 Ma (Re-Os minimum age constraint = 898 ± 68 Ma) Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These fossils, variably preserved by iron oxides and clay minerals, represent two size classes. The larger forms feature unbranching thalli with uniform cells, differentiated cell walls, longitudinal striations, and probable holdfasts, whereas the smaller specimens display branching but no other diagnostic features. While the smaller population remains unresolved phylogenetically and may represent cyanobacteria, we interpret the larger fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based on their large size and presence of rib-like wall ornamentation. Considered as such, the latter are among the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores Creek fossils indicate that eukaryotic algae, including green algae, colonized marine environments by the early Neoproterozoic Era. 
    more » « less